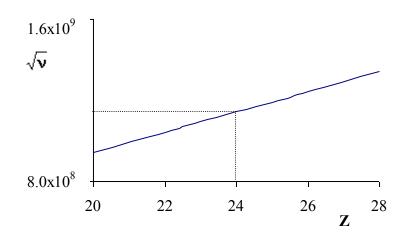
1. As 1 eV = 1.602×10^{-19} J, the kinetic energy = T = 100eV = 1.602×10^{-17} J. Rearranging the equation for the kinetic energy in terms of the momentum and substituting in the value of the electron mass, m_e, gives:

$$p = \sqrt{2m_e \times T}$$

= $\sqrt{2 \times (9.109 \times 10^{-31} \text{ kg}) \times (1.602 \times 10^{-17} \text{ J})} = 5.402 \times 10^{-24} \text{ kg m s}^{-1}$

As the momentum p = mv, the electron velocity is:

$$v = \frac{p}{m_{\rm e}} = \frac{(5.402 \times 10^{-24} \,{\rm kg \, m \, s^{-1}})}{(9.109 \times 10^{-31} \,{\rm kg})} = 5.93 \times 10^6 \,{\rm m \, s^{-1}}$$

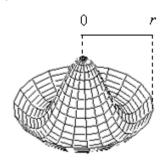

From de Broglie's relationship, the wavelength associated with a particle of momentum p is:

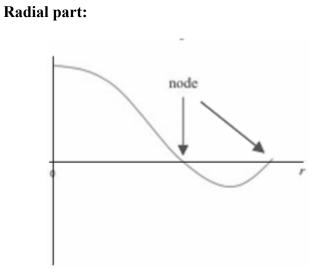
$$\lambda = \frac{h}{p} = \frac{(6.626 \times 10^{-34} \text{ J s})}{(5.402 \times 10^{-24} \text{ kg m s}^{-1})} = 1.23 \times 10^{-10} \text{ m} = 1.23 \text{ angstroms}$$

2. Moseley found empirically that a plot of \sqrt{v} vs. atomic number Z gives a straight line. The wavelengths first need to be converted into frequencies using $v = c / \lambda$:

element	₂₀ Ca	22Ti	23V	₂₅ Mn	₂₆ Fe	28Ni
frequency (Hz)	8.92 × 10 ¹⁷	1.09 × 10 ¹⁸	1.20×10^{18}	1.42×10^{18}	1.55 × 10 ¹⁸	1.81×10 ¹⁸

A plot of \sqrt{v} vs Z is shown below and is indeed a straight line. For Z = 24 (Cr), the value of $\sqrt{v} = 1.15 \times 10^9$ so $v = 1.32 \times 10^{18}$ Hz. Using $\lambda = c / v$ gives $\lambda = 0.227$ nm

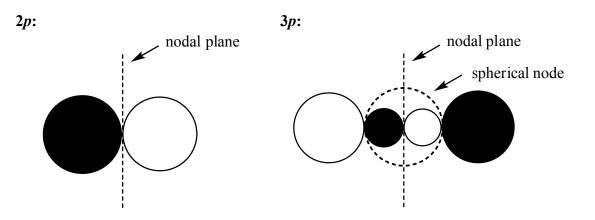

3. The energy levels get closer and closer together as n increases so the *biggest* gap is between the n = 1 and n = 2 levels.


Helium has Z = 2. The energy of the n = 1 and n = 2 levels are:

$$E_1 = \frac{-E_R(2)^2}{(1)^2} = -4E_R$$
 and $E_2 = \frac{-E_R(2)^2}{(2)^2} = -E_R$

The energy separation is $3E_R = 3 \times (2.18 \times 10^{-18} \text{ J}) = 6.54 \times 10^{-18} \text{ J}$

4.



5.

Orbital	п	l	m_l
4 <i>d</i>	4	2	-2, -1, 0, 1, 2
1 <i>s</i>	1	0	0
3 <i>p</i>	3	1	-1, 0, 1
5 <i>d</i>	5	2	-2, -1, 0, 1, 2

5.

6.	(a)	Ο	[He]2s ² 2p ⁴	[He] ↑↓	$\uparrow \downarrow \uparrow \uparrow$	
	(b)	Ga	[Ar]4s ² 3d ¹⁰ 4p ¹	[Ar] ↑↓	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	↑
	(c)	Fr	[Rn]7s ¹	[Rn] ↑		

Optional question.

The s-electrons in mercury must travel at high speeds due to their closeness to the large (Z = 80) nuclear charge. As a consequence, their masses are relativistically increased. This causes a reduction in the size of s-orbitals and this, in turn, increases the attraction to the nucleus. As a result, the 6s² electrons are unexpectedly inert and reluctant to get involved in metallic type bonding. The weak interaction between Hg atoms causes it to be a liquid at room temperature.

Calculations in which relativity is ignored indicate that in a hypothetical universe in which relativistic effects are zero (i.e. one in which the speed of light is infinite), mercury would be a metallic solid like zinc and cadmim.